
ANNEX I
The Self-Consistent 3D Electrostatic Code ARIADNE:

Solver Improvement and the Parallelization of the Code
John Gr. Pagonakis and John L. Vomvoridis

School of Electrical and Computer Engineering
National Technical University of Athens

INTRODUCTION
The trajectory code ARIADNE has been developed for the self-consistent simulation of three-dimensional

electrostatic effects in a gyrotron beam tunnel. For the beam tunnel of a conventional gyrotron it can be used to
study effects associated with deviations from cylindrical symmetry, such as those produced by non-uniform elec-
tron emission from the cathode, mis-alignments between the mechanical and the magnetic axis, etc. In addition,
it can handle fully three-dimensional beam tunnels (with dependence on the polar angle), as is the case of a sheet
beam for quasi-optical gyrotron. Some details about the structure and the function of the code have been already
presented in the previous year report (Annex I, 2001). During last year, several improvements have been addressed
in the code which are described by the following tasks:

� The linear interpolation used for the potential description was upgraded to quadratic.
� The solver of the sparse linear system and the subroutine for the beam calculation were parallelized.
� The user-interface was modified to control all processors of the parallel computer system.

LINEAR vs QUADRATIC INTERPOLATION
For the solving of Laplace and Poisson equations, the code uses the finite element method. In the earlier

version of the code, the description of the potential in the region of each tetrahedrical element of the finite element
mesh is achieved by linear interpolation of potential values between the four vertexes of each element (four degree
of freedom per element). In particular, the potential is described by the equation

���� �� �� � �� � ��� � ��� � ��� (1)

where (�, �, �) are the spatial variables and the �� are calculated by the constraint that eq. 1 should satisfy the
values of the potential at the four vertexes of the tetrahedron. As a result, the three components of the electric
field (which are the derivatives of the potential function) have constant values in each tetrahedron. For this reason,
an extreme dense mesh is demanded for the approximation of the electric field. To avoid this difficulty in the
improved version of the code, the description of the potential in the region of the elements takes into account not
only the values of the potential at the four vertexes but also the potential values at the middle points of the six
edges (ten degree of freedom per element). In particular, the potential is expressed by the equation

���� �� �� � �� � ��� � ��� � ��� � ���
� � ���� � ���� � ���

� � �	�� � ��
�
�� (2)

In this case, the components of the electric field vary linearly in the region of the elements. The cost of this
improvement is the increasing of the order and of the number of non-zero values of the sparse linear system
which is generated by the application of the finite element method, as well as the need for computer memory and
computational time. The solution of this difficulty is the parallelization of the code and the execution in a parallel
computer system.

THE CODE STRUCTURE

The newer parallel version of the code uses the library MPI (message passing interface) and is able to be
executed in distributed parallel computer systems (clusters). For this reason, the structure of the code has been
modified to interconnect the function of all available processors of the cluster and the user (see fig. 1). The process
which the code initial executes is called master process while the other available processes are called slaves.
The user introduces the command in the appropriate syntax to the command line editor and in the interpreter the
command is coded to a simpler form, which is understandable by the control. The slave processes are informed
about the user command and the slave control subroutine determines the next step. When the command is to be
executed only by the master, a terminal message is sent from each slave to master. Otherwise, the appropriate
subroutine is called and executed simultaneously with the master process.

THE PARALLELIZATION OF THE SOLVER AND OF THE PARTICLE PUSHER
The parallelization of the solver subroutine is based on the domain decomposition method. The total mesh is

subdivided to a number of domains equal to the available processors. In particular, the element-base partitioning
is used, i.e. no elements are split along two domains and therefore all information related to a given element is
mapped to the same processor. The geometry of the beam tunnel is longitudinal and the subdivision is achieved
along the axis of propagation. So, there are the internal nodes, which belong to the elements of the same domain,
and the separator nodes, which belong to the interface between two domains. Care has been taken that the number



of nodes of each domain be almost the same. The enumeration of the nodes, which will determine the form of
the sparse matrix of the system (i.e., the position of the non zero values) proceeds first with the internal nodes of
each domain and then advances to the separator nodes. Under these arrangements the sparse linear system, with
unknowns the potential ���

at the internal nodes of the domain � and ����� at the separator nodes between the
domains � and 	, has the form
�
�������������


� ��
���


� ��
��� ��

���

. . .
. . .


��
��
�������

�� �
��� �� �

��� ����
�� �
��� ����

. . .
. . .

�� �
�������

��������

�
�������������

�
������������

���

���

...
����

�����
�����

...
���������

�
������������

�

�
������������

��

��

...
���

����
����

...
��������

�
������������

where, 
	 is the symmetric main matrix of the � domain, � 	�
 is the symmetric main matrix of the separator
between the � and 	 domains, � �

	�
 is the connection matrix of the left separator with the � domain and � �
	�
 is

the connection matrix of the right separator of the 	 domain. Each process is responsible for the generation and
storage of the main and connection matrix of one domain while the main separator matrices (which are much
smaller than the domain main matrices) are distributed to the processes. The main domain and separator matrices
are decomposed 
	 � ��

��
����

� ���
and �	 � ��

��
���� ���� , where � and � demonstrate diagonal and

upper triagonal matrix, respectively. The system is solved using the successive over relaxation iterative method.
In particular, the algorithm consists of the following steps:

� Each processor initializes the values of the potential at the domain and separator nodes it is responsible for.
� The potential values at the separator nodes are sent to two processors, which are responsible for the two

domains separated by the separator.
� The new values of the potential at the internal nodes of all domain are simultaneously calculated by the

equation
�
���

� ���
��

�
����	 � ���� �����

� ����
���	 � ���

	���	�
�
	���	 � ���

	�	���
�
	�	�� � �	� (3)

� In addition for all subdomains are calculated the help arrays

��
���

	 � ���

	�	���
���
	 � ��

���
	 � ���

	���	�
���
	 (4)

and are sent to the processors which are responsible for the left and right separator.
� The new potential values are calculated for the separator nodes by the application of the equation

	
������� � ���

������



����	�	�� � ��

���

	 � ��
���
	�� �

�
��� ��������� � ��������

�
��	�	�� � �	�	��� (5)

� Finally, if the maximum increment of the potential values exceeds the specified by the user tolerance the
process returns to the second step. Otherwise the computation is terminated.

In fig 2 is presented the curve of computational time needed with the number of processes for the simulation of a
140GHz gyrotron gun with the use of a mesh with 199347 nodes.

For the parallelization of the particle pusher no information exchange is needed between the processors of the
cluster. The trajectory of each electron is independent of the trajectory of all other beam electrons. So, the beam
electrons are distributed to the available processes and the calculation of the beam is achieved in a fully parallel
way.

USER COMMAND LINE EDITOR

SCRIPT FILE INTERPRETER

CONTROL

SLAVE PROCESSES

MASTER PROCESS

COMMAND EXECUTION

RECEIVE TERMINAL MESSAGE

COMMAND EXECUTION

CONTROL

SEND TERMINAL MESSAGE

RECEIVE CONTROL INFORMATION

SEND CONTROL INFORMATION

Figure 1: The structure of the code.

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

������ �� 	��
����� �

�

�

�
�
��
�
�
�
��
�
��
�

�

Figure 2: Computer time with number of processes.


