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Introduction. During this period, we studied the nonlinear interaction of relativistic electrons with a constant 
magnetic field and an oblique (a) monochromatic electromagnetic wave [1,2,3,4] (b) electromagnetic 
wavepacket of narrow bandwidth, consisting of a central frequency mode and two sidebands [5]. The dynamical 
behaviour of each system was visualized using Poincaré surfaces of sections (for (a) only) and energy 
distributions, over and under the estimated threshold to chaos. Issues related to the energetic, spatial and velocity 
diffusion across the ambient magnetic field lines were examined by following the evolution of the ensemble 
mean square displacements 〈(γ–γ0)2〉, 〈(r–r0)2〉 and 〈(p–p0)2〉 for various values of the wave power. We focused 
our attention in strong as well as moderate amplitudes, in the area near the threshold to chaos where the phase 
space is complex and a mixture of periodic and stochastic orbits co-exist. The type of diffusion in each space 
was determined and found to obey simple power law with scaling exponents indicant of sub-diffusion, a 
behavior connected with the existing regions of regular evolution in the phase space. 

Hamiltonian formulation. Assuming the ambient plasma is cold, the normalized (over mec2) Hamiltonian of the 
system (a) is H = γ – pz/nz [2,3], where γ is the normalized (over mec2) electron energy 

2 2 2 1 2[1 ( cos sin ) ( cos ) ( sin sin ) ]x y zp p x pγ ε θ φ ε φ ε θ φ= + + + + + + −     (1) 

with px, py, pz the normalized (over mec) canonical momenta, ε the normalized (over mec2/e) wave amplitude, θ 
the wave propagation angle with respect to the z-axis and φ the wave phase, φ = ω(nxx + nzz), with ω the 
normalized (over the cyclotron frequency) wave frequency and nx, nz the refraction index components. Similarly, 
the normalized Hamiltonian of the system (b) is of the form H = γ – ph/nh [5], where 
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with px, py, pa, ph, the normalized canonical momenta, εj the normalized amplitude of the j-th wave mode (j = 
1,2,3) and φj the phase of the j-th mode φj = ωj[nxjx + (nzj – nh)za + nhzh], with ωj the normalized j-th mode 
frequency, nxj, nzj the refraction index components and 1/nh = j=1∑

j=3(1/nzj). 

Threshold to chaos. For the system (a), it is known that significant 
chaos exists only for wave amplitudes larger than a critical value εcr, 
depending on the other system parameters [2,3]; this was found to 
stand also for case (b). This value provides the threshold of the 
wave power for the onset of chaos and all related effects, such as 
diffusion and acceleration. An estimate of εcr can be calculated by 
utilizing the fact that the electron acceleration comes together with 
the stochastic behaviour: by computing and visualizing the mean 
energy 〈γ〉 over an initially monoenergetic electron ensemble for 
many ε values, we expect at εcr a major burst to appear as 
acceleration occurs due to the onset of chaos. This is shown in fig.1, 
where we plot the mean electron energies granted during a motion 
time of T=3000 vs ε for both systems. In this and all the following 
cases, the initial energy of the N=1000 particles is taken γ0=2.5, 
while the wave propagates at θ=400 with frequency ω = 6π MHz in 
the ambient field B0=0.35G and plasma density ne = 102 cm-3; in (b), 
the packet extends ±0.02ω in the frequency space, with each mode 
having amplitude ε/2. The burst is seen to take place near εcr = 0.03 
for (a) and εcr = 0.04 for (b), and that is the best estimate of the 
threshold value we can get using this method for the current system(s) parameters. 

System dynamics. In the 2-degree-of-freedom case (a), the dynamics may be ascertained by using Poincare 
images of the phase space [2,3]. It turns up that chaotic phenomena prevail in all the phase plane except (i) an 
extended neighborhood of (0,0) covered by invariant curves and (ii) islands in the chaotic sea, corresponding to 
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Figure 1. Ensemble mean energy <γ> vs ε
for an orbit time of T=3000. N=1000 particles
of initial energy γ0=2.5 were used. 



 

high-order resonances. Thus, the kind of motion depends strongly on the initial conditions. For (b), although 
mapping the phase space is not possible due to the 3-dimensions, the phase space topology is is expected to be 
similar. In both cases, the system dynamics can be seen from a 
statistical point of view, by forming the energy distribution of 
similar samples at several orbit times and parameters. An example 
of the results in both cases is in fig.2, where the distribution 
function at T=104 is plotted vs γ for ε =1. It is clear that the systems 
behave as stochastic, at least in the regions explored by the 
particles. The distribution has a canonical form, a sign that diffusion 
occurs, with almost all particles participating in the energy diffusion 
process. Acceleration is more intense for the electrons that interact 
with the wavepacket, as expected due to the increase of the 
electron-cyclotron resonances in the (b) case. 

Anomalous diffusion. The motion in phase spaces with 
chaos is rather complex, with the evolution in mostly stochastic 
areas being diffusive[2,4]. Diffusion may be viewed as a Brownian 
random walk, and this iscalled normal diffusion [6]. However, there 
are cases where diffusion is not normal due to the phase-space 
topology [6,7]. The diffusion typeis determined by the scaling in 
time of the mean square deviations; e.g.for energetic diffusion this 
reads 〈(γ–γ0)2〉 ∝ taγ, where αγ is the scaling exponent. Similar 
relations can be written also for the spatial and velocity diffusion,. 
If αγ =1 then diffusion is normal, while if αγ ≠1 we have anomalous 
diffusion, namely sub-diffusion for αγ <1 and super-diffusion for αγ 
<1 [6,7]. An example of applying these to (a),(b)is given in fig. 3, 
where the energy mean square deviations, as found from the orbits, 
are plotted vs time in log-log scales for ε = 0.5. In both cases, the 
behaviour is similar with the curves being linear after some time; 
thus, power laws exist for the displacements, at least after an 
elapsed time of motion. For the orbit part defined after this time, 
each exponent is the slope of the mean square deviation vs time log-
log plot; thus, these exponents may be computed by linearly fitting 
the plots. In this fashion, we found the exponents in all spaces for ε 
within [0.05-1], fairly over εcr. Results for the case (a) are shown in 
fig.4, where the α’s are plotted versus ε; the motion time was varied 
within [104,105], depending on the scaling variations due to the 
complexity of the phase-space. Evidently, for every ε > εcr all 
exponents are less than 1; that means we have sub-diffusion. In 
more detail, for large ε the exponents are almost constant; as ε 
decreases, all α’s start to decrease due to the enhancement of 
ordered structures in the phase space. The decrease becomes radical 
as the wave power reaches the threshold, below which the 
exponents are almost zero due to the lack of diffusion. 

Conclusion. During the study of the relativistic electron 
motion under packets of oblique electromagnetic waves in a 
uniform magnetic field, transport in phase space was found to scale 
with sub-diffusive rhythms. This abnormal diffusion is caused by 
the fractal sets of invariant tori existing in the system(s) phase 
space, which cause large time-space scaling of the particle kinetics 
and thus anomalous transport. 
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Figure 2. Energy distribution function
f(γ) for wave amplitude ε = 1, after
Τ=10000. The ensembles used consist of
N=10000 particles with initial energy
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Figure 3. Log-log energy mean square
displacements vs time for ε = 0.5. The
ensembles used consist of N=10000
particles with initial energy γ0=2.5. 
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Figure 4. Log-log energy mean square
displacements vs time for ε = 0.5. The
ensembles used consist of N=10000
particles with initial energy γ0=2.5. 
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