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ANNEX XIII 
Two step control of resistive wall mode and the monodromy matrix 
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In a recent publication [1] we proposed to stabilize the "resistive wall mode by 
modulating in time the resistivity of the wall. To study the stabilizing effect of this 
modulation we introduced the concept of an "effective potential" depending upon the 
instantaneous value of the resistivity. This led us to concentrate on the rather simple 
dissipative Mathieu-Hill equations, which resulted in very encouraging results related to the 
modulation strength of wall resistivity and the dissipation in the plasma. 

The physical situation can be well understood by assuming viscous 
magnetohydrodynamics in the plasma, then a vacuum region inside a resistive wall with 
Ohm's law, and a vacuum region outside the wall extending to infinity or to a hypothetic 
perfectly conducting wall at a large but finite distance. To study Floquet stability of the actual 
equations (1) [2] of this system in real geometry of magnetic confinement systems is a 
formidable task, which should be preceded by a through investigation of simple and relevant 
models. Discretization of Eqs. (1) [2] allows, however, to define a monodromy matrix which 
is related to the change of the system due to the modulation in time over a period. Stability 
can be determined from its eigenvalues. In the "two-step" case the monodromy matrix is the 
product of two matrix exponentials: 
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where 1A  and 2A  are time independent n × n matrices related to a matrix A depending 
periodically upon time in a piecewise constant manner, i.e., A = 1A for 0 < t < 5t  and A = 2A  
for 5t < t < T. In this case M (t) can be evaluated either by reducing the matrix exponentials to 
polynomials on the eigenvalues of the corresponding matrices [on the basis of Cayley-
Hamilton theorem (CH)] or, without knowledge of the eigenvalues, by using the Baker-
Campbell-Hausdorff (BCH) formula. In the present work the two methods are discussed and 
applied to several examples including the "two-step" dissipative Hill’s equation and a 

33× system, a crude mock up of the actual system (Eqs. (22)-(24) [2]). It turns out that the 
CH and BCH methods are very powerful for instance, the first marginal curve for "negative 
energy" modes of the "two-step" Hill equation (13) [1] can be partly reproduced analytically. 
The 3 × 3 model, however, is too crude to give all qualitative features of the resistive wall 
mode, i.e. dynamical stabilization does not show up as expected because the "wall" has, so to 
say, zero thickness This means that we have to go to much larger systems approaching more 
realistically the plasma and a resistive wall having a thickness larger or comparable to the 
"skin" thickness. An accurate discretization of system (1) [1] with subsequent application of 
CH or BCH methods would lead to much higher numerical effort.  
More details about this study can be found in Ref. [2] 
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