
ANNEX XVII 
Generation and saturation of large scale flows in flute turbulence 
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Electrostatic turbulence, driven by spatial gradients, is believed to be the dominant source of 
anomalous transport in magnetically confined fusion plasmas. Special emphasis has been given lately 
on the properties of large scale anisotropic flows generated by the drift–type turbulence, due to the 
critical role they play in the regulation of the low–frequency drift instabilities and consequently of the 
levels of turbulent transport. The high plasma confinement modes are attributed to the presence of 
large scale poloidal flows (zonal flows). Streamers, on the other hand, are ineffective at inhibiting 
radial transport and, due to their long radial correlation length, may lead to enhanced or bursty levels 
of transport.  The aim of the present work is the numerical investigation of the generation and 
saturation of large scale anisotropic flows by an evolving magnetic–curvature–driven flute instability. 
Flute modes are low–frequency ( ciω ω

0
) electrostatic oscillations of a non–uniform magnetoplasma 

which are elongated along the magnetic field k =  (flute limit) and become unstable due to the 
combined effects of the density inhomogeneity and the curvature of the magnetic field lines.  
We will focus on the description of the excitation, interaction and suppression of the largest–scale 
anisotropic modes, i.e. the zonal and the streamer modes. Zonal modes are defined here as modes with 

 and a small but finite radial scale lengths x0yk = 1k − . Streamer modes are defined as the modes with 
x  and small but finite poloidal wavenumbers yk . A weakly inhomogeneous magnetized plasma 

with characteristic inhomogeneity scale length n  along the radial axis 
0k =

L x  is considered. The 
magnitude ( )B x  and the unit vector b  of the curved magnetic field are modeled by 

0 ( )( ) 1B x B x R= − /  and , respectively, where ˆˆ ( )z z R x= − /b R  ( n ) is the curvature radius of the 
magnetic field lines. Starting from the two–fluid plasma equations, and assuming flute–type (

L>
0k = ), 

quasi-neutral, electrostatic oscillations, it is found that the magnetic–curvature–driven flute modes are 
described by the following set of dimensionless coupled equations for the perturbed electrostatic 
potential φ  and density n :  
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where ˆ{ }f g z f g, = ×∇ ⋅∇ . In Eqs. (1,2), the electrostatic potential has been normalized by eT , the 
time by the ion cyclotron frequency 

e/
ciω , the lengths by the ion Larmor radius s cicρ ω= /  defined at 

the electron temperature (here 2
s e ic T ), the density by the unperturbed plasma density , and the 

temperatures by the electron temperature e . The ion temperature is now denoted by i e

m= /
T T
0n

T ( )τ = / . In 
dimensional units, the electron curvature and diamagnetic drift velocities are given by 

22 ( )g s civ c Rω= / )v c L and n
2 (n s ciω= / , while the viscous and diffusion coefficients µ  and  are 

given by i i

D
(3 10)( )T mci iµ ν ω= / / 2( )D m T eBν= /, e e e , where jν  denotes the collision frequency of 

the plasma particles ( j i e= , ). We linearize Eqs. (1,2) and determine the frequency 
1
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of the unstable flute modes.  The presence of finite ion temperature leads to a decrease of the 
frequency and subsequently of the characteristic wave velocities of the flute modes. For g nv vτ < /  the 
flute modes propagate in the same direction with the electron curvature drift velocity, while for 

g nv vτ > /  it propagates in the opposite direction. Furthermore, for finite ion temperature τ , the 
growth rate of the most unstable flute modes increases due to the ion curvature drift, while the 
spectrum of the unstable flute modes gets narrower due to the stabilization of the short wavelength 

 63



modes by the ion diamagnetic drift.  In the temporal evolution of the flute instability, the inverse 
energy cascade may lead to the generation of large scale flows. As one may see from Eqs. (1,2), there 
exist several non–linear terms which determine the cascading properties of the flute turbulence. The 
polarization drift non–linearity { }2φ φ⊥∇ ,  is responsible for the energy cascading towards large scale 
flows, while the convective non–linearity { }n φ,  is known to cascade energy towards short scales. 
Moreover, the diamagnetic component of the polarization drift non–linearity { }div nτ φ⊥∇ , , which is 
attributed to the finite ion Larmor radius, is expected to lead to direct cascading of the fluctuation 
energy towards short scales.  

DYNAMICS OF FLUTE TURBULENCE 
We have studied numerically the temporal evolution of the system described by Eqs. (1, 2) and the 
subsequent excitation of large scale flows by using a dealized pseudospectral code in a numerical grid 
of 128 ×  128 points. The marching in time is performed with a fourth order Runge–Kutta technique 
with adaptive step–size. We have imposed periodic boundary conditions and considered a physical 
domain in the xy  plane of area [( 30 30 ) ( 30 30 )]x y π π π∆ ×∆ = − , × − , π . The minimum finite 
wavenumber which can be resolved with our scheme is 0 0 0 0 033x yk k k= = = . . In the numerical 
simulations, we have chosen the normalized (over the sound velocity) values of the electron 
diamagnetic and the curvature drift velocities to be 0 03nv = .  and 0 01gv = . , respectively, while the 
viscosity and the diffusion coefficients are fixed at 0 1D µ= = . . The initial conditions for the 
potential and the density perturbations consist of an isotropic spectrum of small amplitude and 
randomly phased Fourier modes.  
In the presentation of the numerical results which follows, we focus on the description of the three 
major distinct phases associated with the evolution of the dominant large–scale flute modes.  
The first phase of the evolution of the flute instabilities is characterized by the growth of the linearly 
unstable flute modes. During this phase, patterns of radial streamers of the fluctuating potential and 
density are formed in the real space, since for given finite poloidal wave number y  the flute modes 
of maximum growth rate are those of 

k
0xk = , i.e. the streamer modes. The growth of the streamer 

modes continues until a suppression mechanism sets on. The duration of the growth is different for 
each streamer mode as the onset of the suppression depends on the mode’s wavenumber. In general, 
the smaller the streamer mode is, the faster, and consequently at smaller amplitudes, it gets suppressed 
(see Fig. 1a).  
When the amplitude of the flute perturbations reaches a critical value, zonal modes are excited. This is 
a purely non–linear effect and arises due to the non–linear coupling of the linearly grown flute modes. 
In Fig. 1b, the excitation and the evolution of the three largest zonal modes is depicted. These modes 
are generated almost simultaneously (around 180t = ) and grow exponentially with similar growth 
rates. The growth rate of the most unstable zonal mode (the one with 0( 0k k )= , ) has approximately 
double the value of that of the dominant linear instability (that with 0(0 )k k= , ). This is due to the 
quadratic nature of the nonlinear terms in Eqs. (1,2) and indicates that the zonal modes grow under the 
action of at least a couple of linearly amplified flute modes of small but finite poloidal wave number.  
When the potential amplitude of the dominant non–linearly growing zonal mode becomes of order 
similar to the potential amplitude of the most grown streamer mode, both amplitudes start to oscillate 
in an out–of phase manner fashion. The result of this mode coupling is the suppression of the streamer 
instability and the saturation of the growth of the zonal mode. Similar description accounts also for the 
evolution and suppression of the smaller zonal and streamer modes (cf. Fig. 1), since the mechanism is 
qualitatively the same. The linear flute–instabilities, as the streamer modes, are suppressed through the 
shear stabilization mechanism , which is provided by the growing zonal modes. This leads to the 
subsequent saturation of the zonal modes as well, since the flute modes which were responsible for the 
zonal growth. In order to shed some light onto the coupling mechanism between the dominant 
anisotropic modes, we have investigated the role of the largest and most grown isotropic modes 

0 0 which provide the necessary matching conditions for a three-wave coupling between 
the largest anisotropic modes (see Fig 2). A series of numerical results show that the large–scale 
isotropic modes, being the coupling carrier between the largest anisotropic modes, support the 
mechanism: a) for the further growth of the zonal mode, b) for the suppression of the largest streamer 
mode and hence, c) for the subsequent formation of the poloidal flow. From the above, it is evident 
that short scale fluctuations can be significant for the generation of zonal flows, and large scale 
isotropic modes for the suppression of the flute instabilities. Furthermore the modes of the potential 
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and the density are organized differently on reaching the dynamical equilibrium that determines the 
saturated state of the flute turbulence. This result is not surprising since the plasma density response is 
not Boltzmannian in the flute limit, and hence the density fluctuations are expected to behave 
differently than the potential ones.  
Further numerical studies we made on the role of { }div nτ φ⊥∇ ,  showed that the diamagnetic 
component of the polarization drift non–linearity, a) suppresses the inverse cascade towards large 
scale modes, and b) stabilizes the secondary excitations of streamers.  

  
Fig. 1 Evolution and saturation of the largest 
streamer (upper panel) and zonal modes] 
(lower panel) of the potential. The shorter 
zonal and streamer mode instabilities saturate 
earlier and at lower amplitudes compared to 
the largest ones. In the saturated state, the 
amplitudes of the zonal modes and the largest 
streamer mode remain constant, while the 
smaller streamer modes get damped.  

Fig. 2 Temporal evolution and saturation of 
the dominant isotropic and anisotropic modes 
for (a) the potential and (b) the density in the 
cold ion limit. The amplitudes of the 
isotropic modes in the saturation state are 
significant for the density fluctuations 

SUMMARY 
We have numerically investigated the excitation and suppression of large scale anisotropic modes as a 
result of the development of the flute instability. The initial formation of the streamer flow is 
attributed to the linear growth of the streamer modes, while the subsequent formation of the zonal flow 
is the result of the excitation of large–scale zonal modes through the inverse energy cascading 
mechanism. The most grown instabilities are the largest–scale ones and saturate last. The numerical 
results show that their suppression can be attributed to the non–linear interaction between the largest 
scale flute modes. The saturated state which follows is characterized by the domination of the largest 
zonal mode for the potential. However, the complexity increases when ion temperature effects are 
considered. It was also shown that modes of various scales are rather significant for the suppression of 
the flute instabilities. Hence, theoretical models based on the scale separation approximation, or zero 
models which incorporate only short scale fluctuations, STs and ZFs, may only be adequate to 
describe just the excitation of the zonal modes.  
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