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INTRODUCTION 
 In [1], we presented a Self-Organised Criticality (SOC) model for the magnetic field in confined plasmas, 
with main characteristics that it is formulated in the usual physical variables (the magnetic field components), 
and that it is physically interpretable in a consistent way. The model is in the form of a cellular automaton (CA) 
that is compatible with MHD, and in [1] we presented an application of the model to a toroidal confinement 
device. Here, we make the application more specific to the reversed field pinch (RFP), which is well- known to 
be a self-organising system, see e.g. [2], in contrast to the tokamak. More-over, we now use polar coordinates in 
the poloidal plane, since the Cartesian coordinate system used in [1] led to unnaturally looking flux surfaces. 

THE MODEL 
 As in [1], in order to achieve MHD compatibility in the CA model, we use the vector potential A as the grid 
variable, and in order to calculate derivatives, A is interpolated, which allows to determine B = ×A and 
J = (c/4π) ×Β in the usual MHD way, so that e.g. ·Β = 0 is ensured. In the Cartesian grid presented in [1], 
global cubic spline interpolation was used to determine the derivatives, whereas in the polar coordinates r, θ we 
use here the interpolation is done with global expansion in terms of Fourier polynomials in the periodic θ 
direction, and with global expansion in terms of Chebyshev polynomials in the r direction. 
 With intended application the RFP, we choose as an initial condition a relaxed Taylor state in the form of 
the Bessel function model (see e.g. [2]), where Ar

0 = 0 and 

 ( )0 0
0( )φ

B
A r J µr

µ
= , (1a) 

 ( )0 0
1( )θ

B
A r J µr

µ
=  (1b) 

(with φ the toroidal angle, B0 the on-axis magnetic field, µ a constant, and J0, J1 Bessel functions of the first 
kind), which yields simple circular flux surfaces, i.e. a magnetic field B = ∇×A of the form 
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 For the current of the initial field, J ∝ ∇×B , we find Jr
0=0 and 

 0 1
φ r r φJ r A

r
⎡ ⎤∝ − ∂ ∂⎣ ⎦ ,     (2a) 

    ( )0 01
θ r r θJ rA

r
⎡ ⎤∝ −∂ ∂⎢ ⎥⎣ ⎦

. (2b) 

In the RFP, the poloidal field coils and plasma currents generate the toroidal magnetic field, and the induced 
(and self-generated) toroidal currents generate the poloidal magnetic field. It thus follows that Jφ and Jθ are 
driven, which through (2) implies that, in terms of our grid-variables, Aφ and Aθ evolve in a way such that Jφ and 
Jθ increase. Translating this scenario to CA rules, we systematically increase Aφ and Aθ by adding increments to 
them, 

 ( ) ( ) ( )1, , , ,φ ij φ ij φ ijA t A t δA t+ = +x x x  (3) 

( ) ( ) ( )1, , , ,θ ij θ ij θ ijA t A t δA t+ = +x x x  

at one (usually random) grid site i, j at a time, and where the increments are in the direction of the unperturbed 
fields, δAφ = sAφ

0, δAθ = sAθ
0, with s a constant or a random number. In this way, the two current components 

increase because either Aφ and Aθ increase or their local curvature increases. 
 The instabilities are considered to be current driven, and the relaxation processes are of resistive, diffusive 
nature and are derived from the MHD induction equation, exactly as described in [1], with the only difference 
that now all three components of the vector potential participate in the diffusive relaxation process. 
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RESULTS 

 Starting from the initial conditions, the system exhibits a transient phase and then reaches the SOC state as 
a dynamic equilibrium. In SOC state, the toroidal field Bφ as well as the poloidal field Bθ remain close in shape 
to the Bessel function model, as shown in Figs. 1 and 2. The characteristic shape of the poloidal field includes a 
change of sign, i.e. a field reversal at the edge. As in the variant of the model in [1], Bφ and Bθ just slightly 
fluctuate about the characteristic shapes in SOC state, they thus exhibit a very high degree of stiffness. Last, we 
note the approximate cylindrical symmetry of the fields, due to the polar coordinate system used, in contrast to 
the respective magnetic fields shown in [1]. 

CONCLUSION 
 The SOC model introduced in [1] was adjusted to the case of the RFP, and the Cartesian coordinates were 
replaced by polar coordinates. The system again reaches the SOC state, in which the magnetic topologies form a 
dynamic equilibrium and stay close in shape to the Bessel function model. 
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Fig. 1: Initial toroidal field Bφ0 (Bessel function model; left) and Bφ in the state of SOC (right). 
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Fig. 2: Initial poloidal field Bθ
0 (Bessel function model; left) and Bθ in the state of SOC 

(right). 
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