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INTRODUCTION 
 Turbulence induced stochastic magnetic fields perturb the regularly nested magnetic field structures in 
toroidal confinement devices. They thus open new channels through which particles can potentially be 
transported and possibly give rise to enhanced or even anomalous particle diffusion. The resulting particle 
transport can be expected to depend on the level of the stochastic perturbations and on their spatial correlations. 
Here, we investigate the influence of the stochastic perturbations on transport by performing test-particle 
simulations in numerically generated stochastic magnetic fields, from which we determine the running diffusion 
coefficients. The stochastic fields are generated (i) with prescribed Gaussian distribution of varying standard 
deviation, and (ii) with prescribed spatial auto-correlation of Gaussian shape and fixed correlation length, and 
they are superimposed on a strong and uniform background magnetic field. 
 The results of the test-particle simulations are also compared to and used to validate the results as obtained 
for the same physical system by the semi-analytical Decorrelation Trajectory (DCT) method. 

THE SET-UP 
 We consider a slab geometry, where the magnetic field B is assumed to have a strong background 
component B0 in the Z-direction (in Cartesian coordinates X, Y and Z), and stochastic components in the 
perpendicular direction, B(X; Z) = B0{eZ + βbX(X; Z)eX + βbY(X; Z)eY}, with the dimensionless β determining the 
strength of the perturbations, bX and bY the normalised stochastic fields, and X=(X, Y).   
In the parallel direction, we assume the particles to move as 

  dZ V
dt

=  (1) 

where V|| is the parallel velocity, and, for simplicity, we assume V|| to be constant and to equal the thermal 
velocity Vth. The Z coordinate thus plays a dummy role, and we use it in the following instead of time t. We 
furthermore normalise the spatial coordinates with the correlation lengths λi, i=X, Y ,Z (defined below), x := X/λX, 
y := Y/λY,  z := Z/λZ. 
 For a stationary magnetic field, the linearised guiding centre equations of motion in the perpendicular 
direction can be written as (see [1], [2]) 
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where Km  = βλX/λZ is the magnetic Kubo number, Λ = λX/λY the stochastic anisotropy parameter, Kdr = βVth/ΩλX 
the drift or thermal Kubo number, and Ω = eB/mc the gyro-frequency. The system of equations is numerically 
integrated with a fourth order Runge Kutta, adaptive step-size scheme. 
The running diffusion coefficients for the motion of the ions in the magnetic field are determined as 
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where the averaging is taken over a large number of test particles. 
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THE STOCHASTIC MAGNETIC FIELD 
 The spatial auto-correlation function M of the stochastic part AS=(0,0,Az) of the vector potential is assumed 
to factorise, M(X,Y,Z) = MX(X)MY(Y)MZ(Z), and to be of Gaussian shape for each of the coordinates, 
  2 2 2 2 2 2( ) exp[ / 2 ],   ( ) exp[ / 2 ],   ( ) exp[ / 2 ]X X Y Y Z ZM X X λ M Y Y λ M Z Z λ∝ − ∝ − ∝ −  

where λi, i=X,Y,Z, are the correlation lengths in the X, Y, and Z direction, respectively. 
 To construct the vector potential AΖ itself, we make use of the Wiener-Khinchine theorem. We first Fourier-
transform M(X,Y,Z), which yields M*(kX,kY,kZ), and the Fourier transform A*

Z of AZ is then given as 

  ( ) 1/ 2
, , exp[ ]

x y zZ x y z k k kA M k k k iφ∗ ∗=  (4) 

with the phases φkX,kY,kZ chosen uniformly random in [0,2π], and from which AZ is determined by Fourier inverse-
transformation. Derivatives of AZ are also calculated via Fourier space, e.g. ∂XAZ is calculated as the inverse-
transform of (∂XAZ)* = ikX A*

Z, and likewise for higher order derivatives. 
 In this way, the magnetic field (bX,bY)=(∂Y AZ, –∂X AZ) and its derivative with respect to Z are determined on 
a three-dimensional grid. The grid-size in each direction is such that it contains several correlation lengths. The 
values of bX(X,Y,Z) and bY(X,Y,Z) for points (X,Y,Z) in-between the grid-sites are calculated by interpolating the 
magnetic field components at the nearest grid-sites with 3rd order cubic splines. By construction, the magnetic 
field is periodic in all three directions, and particles leaving the simulation box are re-injected at the plane 
opposite to the one through which they leave. 

RESULTS 
 The standard parameter values we use are Vth/Ω = 0.3m for the Larmor radius, β =10–2 for the strength of 
the magnetic perturbations, and for the values of the correlation lengths we assume λX = λY = 10–2m and λZ = 1 m, 
so that Km = 1, Λ = 1, and Kdr is varied in the range [0, 0.6]. The stochastic magnetic field is generated on a grid 
with 643 grid-points. The diffusivities are determined from 106 test particles in 103 different samples of the 
magnetic field.  

For fixed drift Kubo number (Kdr = 0.2) and for two different magnetic Kubo-numbers, Fig. 1 shows the 
radial Dxx(z) and the poloidal Dyy(z) diffusion coefficients for different degrees of anisotropy Λ. Basically, Dxx 
decreases and Dyy increases with increasing Λ, whereby this effect is more pronounced the larger Km is, i.e. the 
stronger the magnetic perturbation is.  
 

 
 Comparing to the results from the DCT method, we find that the values of the diffusion coefficients 
coincide within 20% for Dyy in the case Km=0.5 and for Dxx in the case Km=3.0, and they also exhibit the same 
scaling with Λ. For Dyy in the case Km=3.0 the scaling with Λ is the same, the differences in values reach though 
now 50%, as for Dxx in the case Km=0.5, where moreover the scaling with Λ is different. In basically all cases 
shown so-far, the time needed to reach the asymptotic state is roughly 5 times larger that in the DCT method. A 
similar agreement between the two methods was found when varying Kdr and keeping the other parameters fixed. 

Fig. 1: Radial (a) and poloidal (b) running diffusion coefficients for Kdr = 0.2 and Km=3, and for different 
values of the stochastic anisotropy parameter Λ. (c) Asymptotic values of the diffusion coefficients as a 
function of Λ, for Kdr =0.2 and two different values of Km (0.5 and 3). 
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 We now investigate how far some of the assumptions we made influence the results. We consider ITER-
like conditions and choose He2+ as test-particles. Kdr is thus fixed, and we concentrate on the isotropic case 
(Λ = 1), with a level of stochastic perturbation β = 10–2. 
 First, we investigate how accurate the linearised gyro-centre approximation of (2) is. Thereto, we integrate 
the equations of motion in terms of the Lorentz-force. The two perpendicular components of the initial velocity, 
VX(0) and VY(0), are chosen random with Gaussian distribution that corresponds to the temperature Ti, and the 
parallel component VZ(0) is either random and Gaussian distributed (again with temperature Ti), or we let it equal 
to Vth = (3kBTi/mHe)1/2, as in the gyro-centre approximation. Figure 2 shows the corresponding running diffusion 
coefficients. With VZ(0)=Vth, the gyro-centre approximation overestimates the diffusivity by roughly 50%, it is 
though closer to the case with random VZ(0), still overestimating it by now 15%.  
 Second, we address the question in how far neo-classical effects alter the results presented so-far. Thereto, 
we use the standard (vacuum) tokamak magnetic field (see [3]) with safety-factor from [4]. Onto the background 
field, we superpose the stochastic magnetic field (with β = 10–2) that is numerically generated as before on a 3-D 
Cartesian grid and transformed to toroidal geometry. 
 Figure 2 shows two cases of integrating the Lorentz-force in toroidal geometry, one with random V||(0) and 
one with V||(0) = Vth (with V|| in toroidal geometry corresponding to VZ in cylindrical geometry), respectively (no 
drift approximation is applied). They yield very similar results, the approximation V||=Vth is more valid in 
toroidal than in cylindrical geometry, the diffusivities are though roughly 7 times smaller than those derived in 
cylindrical geometry, basically due to neo-classical effects.  
 
 

 

CONCLUSION 
 We have shown that the DCT method gives qualitatively satisfying results, and quantitatively it achieves a 
precision of 50% in the calculation of the diffusion coefficients. Non-linear effects in the gyro-centre 
approximation, as well as the effects of toroidal geometry, must be taken into account for a quantitatively 
reliable description of transport. 
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Fig. 2: He2+ (physical units): Radial (a) and poloidal (b) running diffusion coefficients for 
β = 10–2 and Λ = 1, in cylindrical and toroidal geometry, and with the gyro-centre approximation 
compared to the integration of the Lorentz force. 
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