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INTRODUCTION 
A study is presented of the two-dimensional MHD natural convection of an electrically conductive fluid in 

an internally heated horizontal shallow cavity in the presence of an external vertical magnetic field. All walls are 
electrically insulated, with the horizontal being adiabatic and the vertical isothermal. The method of the matched 
asymptotic expansions is used to obtain solutions of the flow and heat transfer characteristics. This analysis, 
valid for large cavity aspect ratios and for any magnetic field strength, is particularly helpful for the inexpensive 
determination of the flow field. In addition to the analytical solutions, the same flow is also determined 
numerically for a range of Hartmann, Prandtl and Rayleigh numbers in order to verify the accuracy and validity 
of the analytical results and to calculate the constants arising by the analytical approach. The main feature of the 
present flow is a symmetric double-cell Hadley circulation with the fluid ascending in the hotter centre of the 
cavity and descending near the vertical cold walls. The comparison of the results of the analytical and numerical 
solutions was found to be fairly good indicating the correctness of the analysis and its applicability. 

MATHEMATICAL FORMULATION 
Consider the horizontal two-dimensional rectangular shallow cavity of Fig. 1 of large aspect ratio L/h 

(length/height) filled with an internally-heated electrically conductive fluid. The flow is assumed to be laminar, 
steady and two-dimensional while Joule heating and viscous dissipation effects are neglected. Also, the quasi-
static (or low magnetic Reynolds number, Rm) approximation is employed for the fluid magnetic induction-
momentum connection because the induced magnetic field is considered negligible compared to the external 
magnetic field B0.  

 
Fig. 1: Geometry considered and boundary conditions 

Based on the above assumptions and using the Oberbeck-Boussinesq approximation for the fluid density 
thermal variations, the dimensionless governing equations of the present 2-D steady incompressible MHD flow 
are as follows: 

2 2
4 1 2

2

( , )
Pr a a

( , )
H R

x z z x

ψ ψ ψ
ψ − ∂ ∇ ∂ ∂Τ

∇ = + +
∂ ∂ ∂

 (1) 

2 ( , )
1

( , )

T
T

x z

ψ∂
∇ + =

∂  
(2) 

Where Ψ=ψ/α is the dimensionless streamfunction defined via the relationships u=∂ψ/∂z and w=-∂ψ/∂x, 
α=k/ρcp is the fluid thermal diffusivity, X=x/h and Z=z/h are the dimensionless x and z coordinates, respectively, 
and Θ=Tρcpa/h2Q is the dimensionless fluid temperature (note that Ψ is changed to ψ, X to x, Z to z and Θ to T 
thereon). Furthermore, Pr=ν/α is the fluid Prandtl number, Ra=gβQh5/ρcpνα2 the Rayleigh number and 
Ha=B0h(σ/ρν)1/2 the Hartmann number. Finally, the notation ∂(i,j)/∂(x,z) stands for (∂i/∂x)(∂j/∂z) - (∂j/∂x)(∂i/∂z). 

The method of the matched asymptotic expansions is used to obtain the basic flow and temperature fields 
from Eqs. (1) and (2) and their boundary conditions, as shown in Fig. 1. Thus, the core solutions for the 
temperature, streamfunction and vertical velocity read as: 
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where Rs=RaL is the scaled Rayleigh number and ym, ym,0, am, f are functions of Ha, Rs, z and ξ. 

Regarding heat transfer, an average Nusselt number for the cavity based on the heat transfer through the 
side wall at x=0 relative to the maximum temperature difference in the cavity, located at (ξ=1/2, z=1/2), can be 
estimated from Daniels and Jones [1]:  
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The present numerical model was based on the in-house model developed by Iatridis [2] which used the 
open source CFD library “OpenFOAM” [3]. Furthermore, it was initially validated by successful comparison 
with the results of Al-Najem et al. [4] and Ozoe et al. [5]. Thus, the numerical simulations solved the following 
system of dimensionless flow-governing equations: 
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The equations were made dimensionless by scaling the length with the cavity height h, velocity (u) with 
a/h, pressure (p) with ρα2/h2, magnetic field (B) with B0, current density (J) with σB0α/h, electrostatic potential 
(φ) with B0/α and time (t) with h2/α. Moreover, the dimensionless temperature is defined as T=(T-T0)/(Qh2/k). 

Equations (7) to (11) together with their boundary conditions were solved by using a finite volume method 
based on the transient pressure-velocity coupling algorithm PISO [6]. A Crank-Nicolson scheme was used for 
the transient terms, central differences for the Laplacian and pressure terms and a hybrid difference scheme for 
the convection terms. At each step, the solution is iterated until the residuals of the mass, momentum, 
electrostatic potential and temperature equations became smaller than 10-7. A non-uniform staggered grid of 
(400x80) lines in the horizontal and vertical directions, respectively, with finer distribution near the walls was 
tested and considered adequate for the present study. Special attention for the distribution of grid lines was given 
because the Hartmann boundary layers are narrow and must be adequately covered by the numerical grid. 

RESULTS AND DISCUSSION 
The resulting flow consists of a symmetric double-cell Hadley circulation with the fluid ascending in the 

hotter center of the cavity and descending near the cold vertical walls. Both analytical and numerical results 
demonstrate that the Hartmann (Ha) and the scaled Rayleigh (Rs) numbers can influence notably the heat 
transfer mechanism. More specifically, the fluid is decelerated by the external magnetic field leading to the 
dominance of heat conduction and reducing the heat transfer. The same occurs when Rs decreases, since the 
reduction of internal heating reduces the temperature gradients in the cavity and, thus, the effects of buoyancy. 
Consequently, the fluid temperature is kept high and the vertical walls lose their ability to cool the interior fluid. 
Fig. 2 shows that as Ha decreases the core temperature also decreases with the maximum value located at mid-
cavity. Fig. 3 indicates that as Rs increases (or Ha  decreases) the natural convection is intensified and, thus, the 
average Nusselt number relative to the maximum temperature difference in the cavity (Nuav) increases. In 
addition, the analytical vertical velocity in the core region cannot attain the negative values near the vertical 
walls which appear in the numerical results indicating a downward fluid motion in this region. Figs. 4 and 5 
show again that the natural convection becomes stronger as Rs increases (or Ha decreases), as indicated by the 
increased velocity and streamfunction values. The analytical values of streamfunction were approaching the 



numerical ones near the walls as the fluid motion was decelerated. The comparison between the numerical and 
analytical results showed that the latter are valid in the core region for low internal heating and strong magnetic 
fields. Finally, instabilities are expected to arise at sufficiently large Rayleigh numbers.  
 

 
Fig.2: Analytical core temperature profiles at mid-

cavity height for Rs=3000 and various Ha. 

 
Fig.3: Variation of the average Nusselt number  

with Ha for various values of Rs.  

 
Fig.4: Vertical velocity profiles at mid-cavity height  

for various values of Ha and Rs=1000.  

 
Fig.5: Distribution of core streamfunction at mid-
cavity height for various values of Rs and Ha=15.  
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