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INTRODUCTION 
 A linear second order ODE containing a small parameter multiplying the second derivative, thus generating 
a boundary layer near one of the boundaries, was solved via the standard finite element methodology using 
Lagrangian basis functions. The exact error was obtained upon comparing against the exact solution. Next, an a-
posteriori error estimate was obtained based on the symmetric part of the operator and performing an element-
wise calculation using the residual method with flux equilibration and a higher order finite element description. 
The mesh was subsequently adapted in regions of the domain where the error estimate acquired values beyond a 
certain predetermined threshold with respect to the numerical solution. Increased convergence rates were 
compared and the error estimates were compared with the actual numerical error. 

 
FORMULATION AND NUMERICAL SOLUTION 

 An effort is made to implement a numerical technique that captures dissipative layers in MHD applications 
with minimal mesh requirements. This methodology can be extended to capture Hartmann and side layers in 
non-ideal MHD [1] or critical layers in plasma modeling [2]. The basic concept follows from earlier ideas based 
on a posteriori error estimates using element residual methods [3]. To this end the following ODE is solved 
using the finite element methodology :   
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 The exact solution of the above ODE is 
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=  which exhibits a boundary layer at x=0. The numerical 
solution is obtained in terms of standard finite element analysis using a uniform mesh as a starting point :   
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with Bi(x) the Lagrangian basis functions. As a next step error estimate function φ is calculated on the element 
level and through it an error estimation is obtained, following [3,4], using the norm consisting of the symmetric 
part of the ODE: 
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 The above error estimate is compared against the norm of the exact numerical error in order to assess its 
validity. Function φ is calculated by solving a local problem on each element by employing an element 
equilibration technique:  
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xK and xK+1 are endpoints of the K’th element in the one-dimensional mesh, αK,K+1 αΚ+1.Κ are appropriately 
chosen flux splitting constants [3,4] and Bi basis functions of higher order than those used in the solution of the 
actual problem (2).  
 In this fashion, upon obtaining a solution of (1) via (2) an a-posteriori error estimate is obtained. Next the 
mesh is subdivided in elements for which the indicator  
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falls below a certain predetermined value, e.g η=0.1, and fast convergence to the actual solution is obtained [5]. 
Extension to the two-dimensional case is underway in which case the finite element solution needs to be 
extended so that it accounts for irregular nodes that arise in the process of h-refinement of the mesh. 
 

CONCLUSIONS AND GENERAL PERSPECTIVES 
 Upon extension to two-dimensional problems and proper coupling with a spectral methodology to account 
for variations in the third dimension, the above methodology is expected to provide increased accuracy in 
simulations of MHD flows at large Hartmann numbers, in which case strong Hartmann and side layers develop 
in the vicinity of walls in ducts carrying liquid metals. Especially in cases with curved boundaries where 
asymptotic solutions are difficult to develop this approach is a viable alternative for obtaining reliable numerical 
predictions of flows with large Hartmann. 
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